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Abstract—Our goal is to develop a complete ultrasound platform 
based on real-time SAFT (Synthetic Aperture Focusing 
Technique) GPU processing. We are planning to integrate all the 
ultrasound modules and processing resources (GPU) in a single 
rack enclosure with the PCIe switch fabric backplane. The first 
developed module (RX64) provides acquisition and streaming of 
64 ultrasound channels. We implemented and benchmarked data 
streaming from the RX64 to the GPU memory and the SAFT 
image reconstruction on the GPU. A high system performance 
was achieved using hardware assisted direct memory transfers 
and pipelined processing workflow. The complete system 
throughput, including 128 channel data transfer at 16kS per line 
and low-resolution 256x256 pixel image SAFT reconstruction on 
a single Nvidia K5000 GPU, reached 450 fps. The obtained 
results proved the feasibility of the ultrasound real-time imaging 
system with GPU SAFT processing. 
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I.  INTRODUCTION 
Medical ultrasound based visualization systems require a 

vast amount of data bandwidth and computational power for 
real-time execution of the signal analysis and imaging 
algorithms. Thus so far the front-end processing is realized 
using hardware solutions. However, hardware based processing 
become a barrier for implementation of more and more 
complex imaging algorithms e.g. based on synthetic aperture 
imaging. In recent years, a dynamic development of parallel 
processing technology, especially multi-core processors (CPU) 
and general purpose graphics processing units (GPGPU) 
enabled migration of hardware based signal processing to more 
flexible software based signal processing. This trend is clearly 
visible in literature, where numerous studies are devoted to 
GPGPU applications in ultrasound signal processing [1-4]. 
However, acquisition and communication architecture of the 
system are equally important.  

We took a holistic approach to the system architecture in 
order to smoothly integrate a hardware acquisition subsystem 
and asynchronous software based processing.  

A real-time implementation of the Synthetic Aperture 
Focusing Technique (SAFT) imaging methods is a big 
engineering challenge due to the required extremely high data 
bandwidth and performance of data processing [5-8]. 
Nowadays, only a complex field programmable gate arrays 
(FPGA) and GPGPUs offer a processing power sufficient to 
implement such tasks. Still, care must be taken to ensure 
balanced resource utilization and communication bandwidth. 

A versatile ultrasound acquisition and processing platform 
designed in our lab will enable implementation of the SAFT 
methods and other complex algorithms of ultrasound signal 
processing and visualization. The developed RX64 card 
provides the acquisition as well as streaming of 64 parallel 
ultrasound channels through the 2nd generation 8-lane PCIe 
interface. The objective of this work was to determine 
maximum sustained raw data throughput from the RX64 via 
CPU memory to the GPU memory, as well as the performance 
of the GPU implementation of the SAFT reconstruction 
algorithm on real-time streamed data.  

II. SYSTEM DESIGN 

A. System Architecture 
The system architecture (Fig. 1) is based on the standard 

PCIe switched fabric. The designed and built a 64-channel 
acquisition module (RX64) is equipped with 2nd generation 8 
lane PCIe communication interface. The RX64 contains a high-
end FPGA Stratix IV 70 GX (Altera, USA) interfaced to: two 
32-channels mixed-signal front-end modules SMM913x 
(Cephasonics, USA) and two 64-bit 8 GB DDR3 SO-DIMM 
memories for data buffering. The Cephasonics modules 
provide analog conditioning of the ultrasound echoes, A/D 
conversion with 12-bit resolution at 65 MSPS, and data 
serialization. 

Serialized 64-channels data are transferred to the FPGA and 
after deserialization are stored in the local DDR3 memory. 
Then, the data are transferred through the PCIe interface to the 
CPU RAM memory. The internal (64-ch ADC: 50 Gbps, 
DDR3: 128 Gbps) and external (PCIe: 40 Gbps) interface 



bandwidth of the RX64 were balanced to meet real-time 
streaming requirements.  
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Figure 1.  The block diagram of RX64->GPU data streaming. 

Data streaming from the module is performed by custom 
made DMA (Direct Memory Access) engine which provides 
very high utilization of the PCIe throughput. The DMA 
transfers data packets between DDR3, that is local to the FPGA 
and PC memory, without involving CPU. The data transfers are 
initiated from the CPU by setting up a number of transfer 
descriptor records that are maintained in the FPGA internal 
memory. Afterwards the engine simultaneously reads data from 
two DDR3 memories and assembles PCI Express posted write 
packets that transfer data to CPU memory. After the transfer is 
finished an interrupt is generated to signal the CPU. The DMA 
engine, acting as a PCIe bus-master, delivers maximum 
performance with minimal CPU load. Data are transferred to a 
page-locked CPU memory, i.e. mapped to a fixed physical 
address. 

B. GPU based processing 
The computing of the acquired data is performed using 

GPGPU processor and OpenCL framework. The data transfer 
from the CPU to the GPU memory with optimal use of the 
OpenCL functions eliminates additional copying of data within 
the CPU memory. Therefore a direct use of a memory region, 
which was allocated by the transfer from the RX64, is possible 
(“pinned memory”). In order to achieve the highest throughput, 
all transfers are implemented as asynchronous operations. The 
transfers from RX64 to the CPU memory, from CPU memory 
to GPU memory as well as  SAFT kernel [9] execution operate 
simultaneously (pipelining processing). Output from 
processing kernel is displayed as a texture with use of 
OpenGL. 

Processing and copying the input and output data use two 
OpenCL queues and allow to minimize time lags between 
consecutive computational kernels execution and optimally use 
of GPGPUs’ compute capability version 2.0 or higher [10, 11]. 
The output data from previous kernel execution are copied 
back to the CPU memory simultaneously with writing to GPU 

the input data for the next kernel processing. Simultaneously 
processing of the data previously transferred is executed. This 
asynchronous process is shown schematically in Fig. 2. The 
time delays between kernel executions occur when drawing is 
executed with use of the same graphics processor due to 
synchronization with OpenGL buffers even when using 
OpenCL – OpenGL interoperability feature.  

 
Figure 2.  Scheme of the part of OpenCL execution timeline with 

asynchronous data transfer (to and from GPU memory) and Synthetic 
Aperture kernel execution. 

The kernel processing durations depend on applied 
reconstruction algorithm. The presented exemplary computing 
kernel is based on Synthetic Aperture method which utilizes 
general plane wave (PW) data [8]. The data for reconstruction 
are collected from 128 channels after insonification, where all 
128 elements generate plane wave propagating inside the 
medium.  

A Single PW image is obtained with use of additional 
apodization [12] on the detection side. The apodization 
function was approximated with polynomial approximation to 
minimize calculation of trigonometric functions on GPGPU. 
Such approximation gives almost two times shorter kernel 
execution time in comparison to kernel with original 
apodization function. For additional optimization of the kernel, 
the suggestions from [13] and strength reduction [14] were 
applied. All optimizations preserve the same level of accuracy 
as the algorithm without optimizations.  

III. RESULTS 
All tests were performed on the PC-class computer with the 

Intel i7-960 (3.2 GHz) processor equipped with 6 GB of RAM, 
ASUS-P5T7WS motherboard and the GPU NVIDIA Quadro 
K5000 and running Microsoft Windows 7 64-bit operating 
system. 

The applied asynchronous transfer of data between the 
RX64 CPU and RAM has reached 3 GB/s (theoretical limit is 
3.8 GB/s). Transfer time of a single frame of the SAFT 
acquisition using 128 channels, sampling at 65MSPS, imaging 
depth of 19 cm (128ch x 16kS x 2B = 4 MB) was 
approximately 1.3 ms. That provides the acquisition frame rate 
of up to 769 Hz to the CPU memory. The transfer of data from 
the CPU memory to the GPU memory was 5.7 GB/s. The 
whole RX64-CPU-GPU transfer reached 3 GB/s and is limited 
mainly by the RX64-CPU. We observed that in terms of 
transfer throughput in this particular configuration (1x RX64, 
1x GPU) the RX64-CPU-GPU transfer is as good as direct 
RX64-GPU transfer. 



The obtained real-time data transfer from the CPU to the 
GPU and reconstruction of the Low Resolution Image (LRI) at 
resolution of 256x256 pixels, on a single GPU card allow to 
obtain frame rate at level approximately 450 Hz.  

TABLE I. THE OBTAINED DATA THROUGHPUT 

Parameter Name Frame rate 
[fps] 

GPU SAFT image proccesing only 
(LRI 256x256 pixels) 800 

RX64->CPU data transfer only  
(128-channlels data @ 16kS/line) 769 

CPU->GPU data transfer only  
(128-channlels data @ 16kS/line) 1459 

RX64->CPU->GPU data transfer and 
GPU SAFT image proccesing 
(LRI 256x256 pixels) 

450 

 

The exemplary visualization of the analyzed data is shown in 
Fig. 3. 

    

Figure 3.  Example of reconstructed image using plane wave imaging with 
data acquired from a phantom; insonification angle was equal to 0 degrees  

and apodization was applied on the detection side.  
Visualization depth is equal to 7 cm. 

Although 450 fps is reasonable processing speed for 
applications, the single SAFT kernel execution time is 
approximately 1.5 ms and with display synchronization delays 
(even when using OpenCL-OpenGL interoperability [10]) is 
the major frame-per-second bottleneck.  

IV. CONCLUSIONS 
The  new ultrasound system architecture and the processing 

flow enable multi-channel real-time ultrasound acquisition, 
streaming and GPU processing. The described implementation 
of the ultrasound PCIe data streaming and GPU processing 
proves the feasibility of ultrasound real-time imaging with the 

GPU SAFT processing for systems with 64–128 channels. The 
presented system uses commercial-of-the-shelf components as 
a computing platform, thus lowers a total system cost. New 
ultrasound processing algorithms can be easily implemented on 
the GPU using widely available development tools. 

The described RX64 acquisition module is the first element 
of the ultrasound versatile platform being in a process of 
development. In the next step, the transmit module will be 
developed and integrated into the system. The GPU software 
framework, based on pipelined streaming and processing will 
be extended with subsequent kernels for the ultrasound 
processing (including flow velocity imaging [15] etc.) as well 
as optimized for new version 5 of the Nvidia CUDA.  

We have hopes  to integrate the complete 192-channel 
ultrasound system in one year. The system has a potential to 
become a tool for both educational and research purposes and 
introduce  new applications and developments in the ultrasound 
field. 
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