
Optimization of real-time ultrasound PCIe data
streaming and OpenCL processing

for SAFT imaging

M. Walczak, M. Lewandowski, N. Żołek
Department of Ultrasound

Institute of Fundamental Technological Research PAS
Warsaw, Poland

mlew@ippt.pan.pl

Abstract—Our goal is to develop a complete ultrasound platform
based on real-time SAFT (Synthetic Aperture Focusing
Technique) GPU processing. We are planning to integrate all the
ultrasound modules and processing resources (GPU) in a single
rack enclosure with the PCIe switch fabric backplane. The first
developed module (RX64) provides acquisition and streaming of
64 ultrasound channels. We implemented and benchmarked data
streaming from the RX64 to the GPU memory and the SAFT
image reconstruction on the GPU. A high system performance
was achieved using hardware assisted direct memory transfers
and pipelined processing workflow. The complete system
throughput, including 128 channel data transfer at 16kS per line
and low-resolution 256x256 pixel image SAFT reconstruction on
a single Nvidia K5000 GPU, reached 450 fps. The obtained
results proved the feasibility of the ultrasound real-time imaging
system with GPU SAFT processing.

Keywords— ultrasonic imaging; synthetic aperture; GPGPU;
FPGA

I. INTRODUCTION
Medical ultrasound based visualization systems require a

vast amount of data bandwidth and computational power for
real-time execution of the signal analysis and imaging
algorithms. Thus so far the front-end processing is realized
using hardware solutions. However, hardware based processing
become a barrier for implementation of more and more
complex imaging algorithms e.g. based on synthetic aperture
imaging. In recent years, a dynamic development of parallel
processing technology, especially multi-core processors (CPU)
and general purpose graphics processing units (GPGPU)
enabled migration of hardware based signal processing to more
flexible software based signal processing. This trend is clearly
visible in literature, where numerous studies are devoted to
GPGPU applications in ultrasound signal processing [1-4].
However, acquisition and communication architecture of the
system are equally important.

We took a holistic approach to the system architecture in
order to smoothly integrate a hardware acquisition subsystem
and asynchronous software based processing.

A real-time implementation of the Synthetic Aperture
Focusing Technique (SAFT) imaging methods is a big
engineering challenge due to the required extremely high data
bandwidth and performance of data processing [5-8].
Nowadays, only a complex field programmable gate arrays
(FPGA) and GPGPUs offer a processing power sufficient to
implement such tasks. Still, care must be taken to ensure
balanced resource utilization and communication bandwidth.

A versatile ultrasound acquisition and processing platform
designed in our lab will enable implementation of the SAFT
methods and other complex algorithms of ultrasound signal
processing and visualization. The developed RX64 card
provides the acquisition as well as streaming of 64 parallel
ultrasound channels through the 2nd generation 8-lane PCIe
interface. The objective of this work was to determine
maximum sustained raw data throughput from the RX64 via
CPU memory to the GPU memory, as well as the performance
of the GPU implementation of the SAFT reconstruction
algorithm on real-time streamed data.

II. SYSTEM DESIGN

A. System Architecture
The system architecture (Fig. 1) is based on the standard

PCIe switched fabric. The designed and built a 64-channel
acquisition module (RX64) is equipped with 2nd generation 8
lane PCIe communication interface. The RX64 contains a high-
end FPGA Stratix IV 70 GX (Altera, USA) interfaced to: two
32-channels mixed-signal front-end modules SMM913x
(Cephasonics, USA) and two 64-bit 8 GB DDR3 SO-DIMM
memories for data buffering. The Cephasonics modules
provide analog conditioning of the ultrasound echoes, A/D
conversion with 12-bit resolution at 65 MSPS, and data
serialization.

Serialized 64-channels data are transferred to the FPGA and
after deserialization are stored in the local DDR3 memory.
Then, the data are transferred through the PCIe interface to the
CPU RAM memory. The internal (64-ch ADC: 50 Gbps,
DDR3: 128 Gbps) and external (PCIe: 40 Gbps) interface

bandwidth of the RX64 were balanced to meet real-time
streaming requirements.

PCIE
SWITCH

PC

RX64 GPU

Memory Memory

Memory

Figure 1. The block diagram of RX64->GPU data streaming.

Data streaming from the module is performed by custom
made DMA (Direct Memory Access) engine which provides
very high utilization of the PCIe throughput. The DMA
transfers data packets between DDR3, that is local to the FPGA
and PC memory, without involving CPU. The data transfers are
initiated from the CPU by setting up a number of transfer
descriptor records that are maintained in the FPGA internal
memory. Afterwards the engine simultaneously reads data from
two DDR3 memories and assembles PCI Express posted write
packets that transfer data to CPU memory. After the transfer is
finished an interrupt is generated to signal the CPU. The DMA
engine, acting as a PCIe bus-master, delivers maximum
performance with minimal CPU load. Data are transferred to a
page-locked CPU memory, i.e. mapped to a fixed physical
address.

B. GPU based processing
The computing of the acquired data is performed using

GPGPU processor and OpenCL framework. The data transfer
from the CPU to the GPU memory with optimal use of the
OpenCL functions eliminates additional copying of data within
the CPU memory. Therefore a direct use of a memory region,
which was allocated by the transfer from the RX64, is possible
(“pinned memory”). In order to achieve the highest throughput,
all transfers are implemented as asynchronous operations. The
transfers from RX64 to the CPU memory, from CPU memory
to GPU memory as well as SAFT kernel [9] execution operate
simultaneously (pipelining processing). Output from
processing kernel is displayed as a texture with use of
OpenGL.

Processing and copying the input and output data use two
OpenCL queues and allow to minimize time lags between
consecutive computational kernels execution and optimally use
of GPGPUs’ compute capability version 2.0 or higher [10, 11].
The output data from previous kernel execution are copied
back to the CPU memory simultaneously with writing to GPU

the input data for the next kernel processing. Simultaneously
processing of the data previously transferred is executed. This
asynchronous process is shown schematically in Fig. 2. The
time delays between kernel executions occur when drawing is
executed with use of the same graphics processor due to
synchronization with OpenGL buffers even when using
OpenCL – OpenGL interoperability feature.

Figure 2. Scheme of the part of OpenCL execution timeline with

asynchronous data transfer (to and from GPU memory) and Synthetic
Aperture kernel execution.

The kernel processing durations depend on applied
reconstruction algorithm. The presented exemplary computing
kernel is based on Synthetic Aperture method which utilizes
general plane wave (PW) data [8]. The data for reconstruction
are collected from 128 channels after insonification, where all
128 elements generate plane wave propagating inside the
medium.

A Single PW image is obtained with use of additional
apodization [12] on the detection side. The apodization
function was approximated with polynomial approximation to
minimize calculation of trigonometric functions on GPGPU.
Such approximation gives almost two times shorter kernel
execution time in comparison to kernel with original
apodization function. For additional optimization of the kernel,
the suggestions from [13] and strength reduction [14] were
applied. All optimizations preserve the same level of accuracy
as the algorithm without optimizations.

III. RESULTS
All tests were performed on the PC-class computer with the

Intel i7-960 (3.2 GHz) processor equipped with 6 GB of RAM,
ASUS-P5T7WS motherboard and the GPU NVIDIA Quadro
K5000 and running Microsoft Windows 7 64-bit operating
system.

The applied asynchronous transfer of data between the
RX64 CPU and RAM has reached 3 GB/s (theoretical limit is
3.8 GB/s). Transfer time of a single frame of the SAFT
acquisition using 128 channels, sampling at 65MSPS, imaging
depth of 19 cm (128ch x 16kS x 2B = 4 MB) was
approximately 1.3 ms. That provides the acquisition frame rate
of up to 769 Hz to the CPU memory. The transfer of data from
the CPU memory to the GPU memory was 5.7 GB/s. The
whole RX64-CPU-GPU transfer reached 3 GB/s and is limited
mainly by the RX64-CPU. We observed that in terms of
transfer throughput in this particular configuration (1x RX64,
1x GPU) the RX64-CPU-GPU transfer is as good as direct
RX64-GPU transfer.

The obtained real-time data transfer from the CPU to the
GPU and reconstruction of the Low Resolution Image (LRI) at
resolution of 256x256 pixels, on a single GPU card allow to
obtain frame rate at level approximately 450 Hz.

TABLE I. THE OBTAINED DATA THROUGHPUT

Parameter Name Frame rate
[fps]

GPU SAFT image proccesing only
(LRI 256x256 pixels) 800

RX64->CPU data transfer only
(128-channlels data @ 16kS/line) 769

CPU->GPU data transfer only
(128-channlels data @ 16kS/line) 1459

RX64->CPU->GPU data transfer and
GPU SAFT image proccesing
(LRI 256x256 pixels)

450

The exemplary visualization of the analyzed data is shown in
Fig. 3.

Figure 3. Example of reconstructed image using plane wave imaging with
data acquired from a phantom; insonification angle was equal to 0 degrees

and apodization was applied on the detection side.
Visualization depth is equal to 7 cm.

Although 450 fps is reasonable processing speed for
applications, the single SAFT kernel execution time is
approximately 1.5 ms and with display synchronization delays
(even when using OpenCL-OpenGL interoperability [10]) is
the major frame-per-second bottleneck.

IV. CONCLUSIONS
The new ultrasound system architecture and the processing

flow enable multi-channel real-time ultrasound acquisition,
streaming and GPU processing. The described implementation
of the ultrasound PCIe data streaming and GPU processing
proves the feasibility of ultrasound real-time imaging with the

GPU SAFT processing for systems with 64–128 channels. The
presented system uses commercial-of-the-shelf components as
a computing platform, thus lowers a total system cost. New
ultrasound processing algorithms can be easily implemented on
the GPU using widely available development tools.

The described RX64 acquisition module is the first element
of the ultrasound versatile platform being in a process of
development. In the next step, the transmit module will be
developed and integrated into the system. The GPU software
framework, based on pipelined streaming and processing will
be extended with subsequent kernels for the ultrasound
processing (including flow velocity imaging [15] etc.) as well
as optimized for new version 5 of the Nvidia CUDA.

We have hopes to integrate the complete 192-channel
ultrasound system in one year. The system has a potential to
become a tool for both educational and research purposes and
introduce new applications and developments in the ultrasound
field.

ACKNOWLEDGMENT
Project POIG.01.03.01-14-012/08-00 co-financed by the European
Regional Development Fund under the Innovative Economy
Operational Programme.

REFERENCES

[1] M. Lewandowski, "Medical Ultrasound Digital Signal Processing in the
GPU Computing Era", in Computer Vision in Medical Imaging,
ed.C.H. Chen, Word Scientific, 2013 (in press).

[2] J. Chen, B. Y. S. Yiu, and A. C. H. Yu, “Medical Ultrasound Imaging :
To GPU Or Not To GPU ?,” Micro, IEEE , vol.31, no.5, pp.54-65, Sept.-
Oct. 2011.

[3] S. Kim, H. Sohn, J. H. Chang, T. Song, and Y. Yoo, “A PC-based fully-
programmable medical ultrasound imaging system using a graphics
processing unit,” 2010 IEEE International Ultrasonics Symposium, pp.
314–317, Oct. 2010.

[4] M. di Bisceglie, M. di Santo, C. Galdi, R. Lanari, and N. Ranaldo,
“Synthetic Aperture Radar Processing with GPGPU,” IEEE signal
processing, vol. 27, no. 2, 2010.

[5] L. Grønvold, Implementing Ultrasound Beamforming on the GPU using
CUDA, Master Thesis, Norwegian University of Science and
Technology, Department of Engineering Cybernetics, 2008.

[6] B.Y.S. Yiu, I.K.H. Tsang, A.C.H. Yu, Real-time GPU-based software
beamformer designed for advanced imaging methods research,
Ultrasonics Symposium (IUS), 2010 IEEE, pp.1920–1923, 11–14 Oct.
2010.

[7] M. Lewandowski, M. Walczak, B. Witek, P. Kulesza, K. Sielewicz,
"Modular & Scalable Ultrasound Platform with GPU Processing",
Ultrasonics Symposium (IUS), 2012 IEEE, 7–10 Oct. 2012.

[8] B.Y.S. Yiu, I.K.H. Tsang; A.C.H. Yu, GPU-based beamformer: Fast
realization of plane wave compounding and synthetic aperture imaging,
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions
on, vol.58, no.8, pp.1698–1705, 2011.

[9] M. Lewandowski, P. Karwat, J. Kudelka, and T. Kleczek, "GPU
Implementation of the STA Algorithm on I/Q Data," Ultrasonics
Symposium (IUS), 2012 IEEE, 7–10 Oct. 2012.

dB

[10] B. R. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa,
Heterogeneous Computing with OpenCL. 2012.

[11] NVIDIA, OpenCL Best Practices Guide. 2011.
[12] Y. Tasinkevych, I. Trots, A. Nowicki, and P. Lewin, “Modified

synthetic transmit aperture algorithm for ultrasound imaging.,”
Ultrasonics, vol. 52, no. 2, pp. 333–42, Feb. 2012.

[13] Intel, “Writing Optimal OpenCL TM Code with Intel ® OpenCL SDK,”
pp. 1–38.

[14] J. Cocke and K. Kennedy, “An Algorithm for Reduction of Operator
Strength,” Communications of the ACM, vol. 20, no. 11, pp. 850–856,
1977.

[15] L.W. Chang, K.H. Hsu, P.Ch. Li, Graphics processing unit-based high-
frame-rate color doppler ultrasound processing, IEEE TUFFC, vol.56,
no.9, pp.1856–1860, 2009.

	I. Introduction
	II. System Design
	A. System Architecture
	B. GPU based processing

	III. Results
	IV. Conclusions
	Acknowledgment
	References

